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Q4 Target: Report on capabilities to model the activities of microbial communities in
environmental samples

The terrestrial, shallow subsurface is a complex and microbially active habitat located beneath the top-most
surface soil layers, comprised of sediments (inorganic or organic unconsolidated material that can originate
from the weathering of rock transported by wind, water or ice), rocks, gas, porewater and groundwater
[1,2]. In terms of DOE research, subsurface environments contain a large diversity of microorganisms under
low nutrient conditions that significantly impacts the carbon, nitrogen, phosphorus, sulfur, and mineral
cycles. For example, up to 40% of the microbial biomass and 10'~10'" g C on Earth resides within the
terrestrial subsurface [3—5]. Typically, subsurface environments contain less labile organic matter (OM)
compared to surface soils, and the degree of connectivity to surface waters (e.g., rivers, streams,
precipitation) can vary drastically. Although water covers 70% of the Earth’s surface, roughly 1% is readily
available for human use, and a vast majority (~95%) of the Earth’s consumable and available freshwater is
groundwater [6—8]. Despite the importance of groundwater for global consumption, agriculture, and
industry, the role of microbial communities in the maintenance of groundwater ecosystems is not well
understood, particularly for sites impacted by human activity. Understanding microbial community
structure and function within the subsurface is critical to assessing overall quality and maintenance of
groundwater. A central goal of ENIGMA is to use high-resolution observation of subsurface microbial
community dynamics in order to extract critical principles that can explain assembly and activity as well as
develop the methods to translate the critical principles to create generalizable models that can predict future
microbial community composition and function given environmental constraints.

On an ecosystem scale, there is limited information regarding the exact relationship between community
composition, function, and environmental constraints between groundwater and subsurface porous media
that can help explain the distribution of microbial biomass and activity that ultimately impacts the fate and
transport of nutrients and contaminants of interest. This report and summary of hydrogeological modeling
as well as modeling for the associated microbial communities will focus on aspects of chosen sites at the
Oak Ridge-Field Research Center (OR-FRC) at the Y-12 Complex. The OR-FRC contains ‘shallow’
freshwater subsurface environments (mainly porous/granular) that can have a high degree of connectedness
with the surface and are impacted by mixed wastes (e.g., organic and inorganic including radionuclides).
These shallow, subsurface environments are common across DOE sites that are impacted by a wide array
of contaminants that have detrimental impacts on human and environmental health. For example, DOE
spends ~$6B/year managing and treating DOE superfund sites, yet the roles of microbes in the subsurface
at these sites are still poorly understood and underexploited.

Traditionally, the shallow subsurface can be separated into three distinct zones based on moisture content
in relation to the water table configuration termed the vadose, capillary fringe and saturated zones (Figurel).
The vadose zone represents the upper most boundary of the subsurface, and following precipitation events,
the vadose zone can experience high saturation levels as vertical infiltration proceeds downward to the
water table, yet residual pore water can persist creating varying levels of water and gas saturation [9]. The
capillary fringe exists at the interface of the saturated and vadose zone, is dynamic, and is highly dependent
upon fluctuations of the local water table [4]. This fluctuating interface has been shown to be a ‘hotspot’ of
biogeochemical activity [10,11]. The saturated zone (i.e., at/below water table) of most aquifers consists of
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porous material and voids are filled with water. Generally, the direction of water flow in the saturated zone
can be in any direction (horizontal and/or vertical).

> With respect to the subsurface environments dictated by water
. content and the impact on microbial communities, much
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attention has been given to the water table position and
sediments in the saturated and capillary fringe zones. At least

EVAPOTRANSPIRATION . . .
for the OR-FRC, nutrients and contaminants of interest tend to

be highest at these boundaries, and therefore, the associated
constraints and the impacts on the microbial communities are
of high interest. The transitional boundary between the vadose
and saturated zones can experience drastic changes in
geochemical parameters (e.g., pH and dissolved oxygen),
particularly during rain events, and thus, the impacts on
microbial activity in terms of geochemical cycling is a target
anee ™ for modeling to enable prediction for the fate and transport of

nutrients and contaminants.

Field site. Sites at the OR-FRC are being used to develop and

Ly apply our integrated approach that includes microbiologists

e, (ecology, molecular, physiology), biochemists, hydrologists,
el % environmental engineers, and modeling. The FRC contains
S| highly contaminated DOE legacy regions along with excellent

field infrastructure available for research instrumentation and

30+ years of biogeochemical data collected by other scientists
in previous work. It has well-mapped hydrology and geology

Figure 1. Conceptual illustration of
representative shallow subsurface . . .
environment that includes the vadose, and complex gradients of nutrients, stressors and contaminants,
capillary fringe and saturated zones. Arrows  making the FRC an excellent site to study the reciprocal
depict the movement of water within and

between these zones that creates dynamic
conditions activity that in turn impact the distribution of nutrients and

contaminants. A large number of active wells enable efficient

interactions of environmental factors on microbial ecology and

groundwater sampling, and new well installation for depth-indexed sediment cores is relatively cost-
effective when needed.

It has become increasingly apparent that microbial populations have distinct physiologies and functions in
the shallow subsurface but the potential relationships between biotic and abiotic parameters of the
ecosystem are not well understood [2,12,13], particularly hydrogeochemical parameters across the different
zones at fine enough resolution. Many questions remain regarding cell interactions with sediments, the
distribution and rate of microbial activity, cooperative/competitive microbial interactions, and mechanisms
of distribution in the shallow subsurface mixing zones. Due to sampling challenges and the complexity of
the heterogeneous subsurface matrix that ranges across the vadose, capillary fringe and saturated zones,
few field sites have been comprehensively described and studied despite the important ecosystem functions
associated with shallow subsurface systems. The shallow subsurface has historically been considered a
stable environment, but it is now clear that temporal and seasonal dynamics influence hydrological mixing



2022 Performance Metric Quarterly Report Q4 LBNL ENIGMA SFA

and thus microbial populations, and we have made similar observations at the OR-FRC [14]. Aquifer
recharge and fluctuating water table can occur via seasonal patterns, and not surprisingly, the transition
zones between the variably saturated and saturated zones have been shown to be an important habitat for
microbial diversity and activity. Technological advances for sample retrieval and fine-scale analyses
(spatial, temporal, cellular) of subsurface samples are needed, including samplers that can retrieve intact
porous media (i.e., sediments) to enable better maintenance of U.S. water sources.

The ENIGMA science focus area (SFA) is a multi-disciplinary, multi-institutional research effort focused
on addressing these foundational knowledge gaps by studying groundwater and sediment microbiomes in
the shallow subsurface at the contaminated OR-FRC. We seek to discover and characterize the reciprocal
interactions between the microbial communities and the geochemical and geophysical parameters of the
shallow subsurface within the contamination plume. Our ambition is to do so at sufficient resolution to
causally predict the active biotic and abiotic mechanisms mediating key processes such as denitrification,
and ultimately predict the future changes in contaminant fate that possibly arise from natural and
anthropogenic perturbations. Outcomes are significant both in the fundamental science of community
ecology and in gaining an applied understanding of biologically-mediated subsurface processes in
contaminated sediments. Moreover, we aim to extract the fundamental principles in order to generalize
models to new sites. This report and summary of hydrogeological modeling as well as modeling for the
associated microbial communities will focus on our developing framework based upon chosen sites at the
OR-FRC.

We have recently organized field information through an integrative model-driven framework inspired by
microbial ecology and reactive transport modeling termed Framework for Integrated, Conceptual, and
Systematic Microbial Ecology (FICSME) [15]. The FICSME conceptual model is intended to provide a
framework toward mechanistic models of subsurface microbial communities that are genome-informed.
For earth system models or models at the scale of a watershed, the contributions and dynamics of microbial
communities may be coarsely represented, often simply via microbial biomass. However, at the scale of
millimeters to meters at which ENIGMA works, it is much more important to understand how microbes
(with potentially different functions) disperse at the site and where they will become abundant. It remains
to be understood how these microscale interactions may propagate to the watershed scale and beyond (if at
all). The FICSME model is a way to coordinate field work with laboratory experiments (as described in our
Q1, Q2, and Q3 reports) necessary for parameterization. For example, laboratory experiments can provide
data on how microbial members respond to different concentrations of metals [16], but field measurements
provide information about the resident microbes at the site, dispersal paths, biogeochemical ranges, efc.
The FICSME model is initially a means to formally enumerate the individual components, and the variables
in the conceptual equation can be mapped to the taxonomic, chemical and physical entities identified as
important during our research and the equation terms track how they interact to affect spatiotemporal
abundance. In particular for this report, groundwater flow and geochemical dynamics have been observed
in relation to microbial populations for the developing FICSME model (e.g., how water flow contributes to
biological and chemical dispersal).

The ENIGMA program is designed to allow increasingly high-resolution and multimodal characterization
of subsurface biogeochemical dynamics in situ and controlled perturbation of those dynamics for training
and testing models designed to identify critical environmental constraints on microbial activity. Based on
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field data, parameters that constrain the FICSME model in terms of water flow, geochemical dynamics, and
subsequent changes in microbial populations are being estimated. Ultimately, the model is being built to
estimate and predict the fate of nutrients and contaminants. At its highest resolution these measures will be
integrated into genome-informed reactive transport models, but it is an active area of research to start with
smaller heterogeneous statistical, mechanistic, and increasingly causally informed machine learning models
to build towards a robust integrated community model. The below sections provide examples of field work
that provides the means to sample parameters of interest as well as the incorporation of field data into
hydrogeochemical, metabolic, and ecological models to determine the relationships between water flow
and geochemistry to the distribution of microbial cells and activities important to contaminants of interest
(e.g., nitrates).

Statistical modeling for microbial populations

There is an overwhelming number of variables that impact the dynamics of any environmental process.
Modeling everything, even everything measurable, is neither an option nor desirable. It is better to derive
the smallest set of variables that have the maximal predictive power so that attention can be focused on
core principles and actionable information. It is also desirable that the predictions are driven by causal
explanations because these are more generalizable to situations not yet observed and are more likely to
allow specific intervention to change outcomes. Therefore, a primary task in ENIGMA wherein we are
measuring nearly 100 chemical species, tens of other environmental variables, tens of thousands of
microbial species and millions of genes is to determine which of these are most proximally responsible
for the observed critical processes and their persistence over time and multiple events.

The first approaches tend to use fairly simple statistical approaches in which various forms of statistical
hypothesis testing (e.g. Mantel tests), static regressions (e.g., ANOVA, ordinations), or temporal statistics
(e.g., time-lagged correlations or auto-regressive moving average models) are used to identify specific
observed variables which correlatively predict potential outcomes. These can become quite sophisticated
in some cases with structured relation models, for example, and corrections for the compositional nature
of especially the metagenomic data. ENIGMA has at one time or another used most of these to analyze
data while moving towards the FICSME model.

Detection of microbial interactions in any environment let alone a largely inaccessible subsurface
environment can be challenging. There are theoretical and practical reasons why this may be even more
difficult than hoped due to the dynamic nature of microbial communities. But even deriving an average
sense of the interactions among microbial taxa from, for example, cross-correlation of temporal or spatial
co-occurrence presents challenges. First, correlation is not causation so without understanding the
mechanisms by which organisms could interact we are left with weak inference at best even when
controlling for indirect effects. Second, the nature of microbiome measures tends to permit only relative
abundances to be measured. That is, the absolute amount of a species is not being measured, but rather a
relative percentage within some error that can lead to errors in estimation of relation. Early on, ENIGMA
developed some of the first methods to control for this sort of error and produced a popular tool called
SPARCC [17]. In this work we showed how not properly controlling for these effects could lead to
completely erroneous inference of correlations among organisms. It also began to inform exactly how
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much data would be necessary to estimate these interactions. These considerations have fed into the
design of the ecological modeling frameworks and associated designs of experiments below.

One of the first follow-on models we attempted brought in an interpretable machine learning method
called random forests [18]. Our goal was to predict the distribution of key environmental variables across
the Y-12 site from the composition of the microbial community observed. The idea being that the most
predictive community members were likely causally linked to the chemical process being predicted and
the combinations of members necessary for accurate prediction were candidates for performing
complementary functions. To power this model, we needed to sample enough locations with variation in
pH, uranium and nitrate to cover the relevant ranges and in enough different ‘contexts’ to render the
predictions robust to environmental variation. While it is still a challenge to rationally design these sorts
of experiments, based on prior field surveys we were able to pick ~100 groundwater wells that had been
previously operating and we measured these environmental variables along with amplicon sequencing of
the communities. From this, we were able to show using random-forest regression that there were critical
taxa, slightly different sets for each of over 26 environmental variables, that could fairly accurately
forecast the abundance of each chemical and found that many of these had mechanisms expected to be
related to the forecasted variable. Further, the same modeling framework was successfully applied to
hydrocarbons released during the Exxon Valdez oil spill showing its generalizability. Variations of this
framework have, since then, become increasingly sophisticated and allow the integration of more types of
data and better representation of causal priors [19,20]. However, we had little sense how these predictions
would vary over time and why the relationships can change.

In a more recent study [14], three shallow wells (FW301, FW303, FW305) in a non-contaminated shallow
aquifer in the OR-FRC were sampled approximately 3 times a week over a period of three months to
measure changes in groundwater geochemistry and microbial diversity. The wells displayed some degree
of hydrochemical variability over time unique to each well, and microbial community composition of a
given well was on average > 50% dissimilar to any other well at a given time (days). Yet, functional gene
diversity remained relatively constant. These results indicated that up to half of a microbial community
could change within a couple of days, likely related to hydrogeochemical changes at the local scale. In
addition, despite high turnover in microbial populations, the overall metabolic functions of the entire
community would not change significantly which indicated some degree of functional redundancy.
Similarity percentage (SIMPER) analysis revealed that variability in the wells differed in the impacts
between low abundance, highly-transient populations and more highly abundant and frequently present
taxa. These results suggested local scale effects between wells likely related to a combination of
heterogeneous flow and geochemistry. Despite these differences, time-series analysis of all three wells
using vector auto-regressive models and Granger causality showed unique relationships between species
number and geochemistry over time in each well, highlighting local-scale effects that can be tested in the
laboratory and the field. The results indicated temporally dynamic microbial communities over short time
scales, with day-to-day population shifts in local community structure influenced by available source
community diversity and local groundwater hydrochemistry.

The results above demonstrated the need to conduct in sifu measurements with increased temporal
resolution for both hydrogeochemical parameters as well as microbial populations that perform different
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functions in order to capture local scale changes that were potentially related to the distribution of
different microbial populations associated with activity of interest (i.e., denitrification).

Finer Resolution of Microbial Populations and Associated Metabolic Potential

Ecological modeling to dissect ecological processes

The diversity, structure, and succession of biological communities are governed by complex ecological
processes, such as selection, dispersal (immigration and emigration), diversification (speciation and
extinction), and drift (random birth and death)[21-23]. These processes can be deterministic (selection) or
include obvious stochasticity (drift, dispersal and diversification). Disentangling these ecological
processes is crucial, but challenging, in ecology, especially for microorganisms, and various qualitative or
quantitative approaches have been developed based on multivariate analyses, neutral theory models, or
ecological null models [24].

Considering the limitations of current methods, we developed two new approaches to quantitatively
assess different processes based on ecological null models [25,26]. One is a general framework to
estimate the relative importance of stochastic ecological processes in shaping community structure, with a
new index, normalized stochasticity ratio (NST) [25]. The other is a quantitative framework (iCAMP) to
estimate the relative influence of selection, dispersal, and drift in different phylogenetic groups [26]. We
tested the new approaches with simulated communities and demonstrated substantial improvement in
quantitative and qualitative performance. The two methods have been widely applied to microbial
communities in various natural, engineered, and host-associated systems (animal and plants).

Enabled by the new approaches, we further explored our newly proposed framework about the general
relationship between environmental stress and ecological processes. Environmental stresses are major
drivers of community variation, but little is known about effects on microbial assembly mechanisms. We
proposed a framework with four major schemas about how stresses affect ecological stochasticity,
selection, dispersal, and drift in microbial community assembly. Our field site has extremely large ranges
of various geochemical properties, and we ranked the stress levels of samples from our site with a
proposed comprehensive evaluation index based on >30 measured factors. The relative importance of
each ecological process was assessed by our new approaches, and the results clearly supported our
hypotheses, showing an increase in selection and decreases in stochasticity, dispersal limitation, and drift
as stress increased. We further investigated the associations between environmental factors and ecological
processes with improved statistical methods. The results indicated the heterogeneous selection (i.e.,
selection leading to more dissimilar communities) was primarily related to abnormal pH, deficiency of
cobalt and molybdenum, and high concentrations of some heavy metals. Moreover, the spatial distribution
patterns of heterogeneous selection and dispersal limitation corresponded fairly well with major
contaminants and geo-hydrological characteristics.

Revealing different mechanisms in different phylogenetic groups (bins) is a major advantage of our new
approach (iCAMP). In the over 260 microbial groups observed at our site, 60%, 31%, and 6.5% were
dominated by dispersal limitation, heterogeneous selection, and drift, respectively (Figure X). The most
abundant three groups governed by heterogeneous selection were from as yet uncultivated phyla.
Interestingly, the ENIGMA team has obtained quite a few isolates that are very similar (>97%) to the
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dominant taxa in the top dispersal- or drift-governed groups, but much fewer isolates similar to those in
top selection-controlled bins, probably due to narrow niche preference to the specific in situ environment.

As field work continues, we are working on the further development of the ecological modeling approach
to include trait-based information (e.g., functional genes from metagenomic analysis) and temporal
ecological null models, as well as a new framework leveraging ecological modeling results to improve
our reactive transport modeling.
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R — demonstrated that different microbial
groups are impacted by different stressors,
and this in turn, can cause different rates of stochasticity, selection, dispersal, and drift that results in
different microbial community structures. The different stressors can be ranked, and results highlighted
the importance of pH extremes as well as the presence/absence of particular heavy metals. The identified
populations/consortia become targets for laboratory work to further inform genetic and physiological
responses to hydrogeochemcial parameters for the FICSME model.

In an effort to integrate microbial functional data (i.e., biochemical catalysis) with field-relevant
constraints, models intermediate between highly detailed reactive transport models and more statistical
models can be constructed. In these cases, microbes are often ‘models’ as classes of biocatalyst based
upon genomic traits which are then converted to chemical reaction sets and thermodynamic constraints
that impact processes of interest. Members of ENIGMA have used models such as the microbial enzyme-
mediated decomposition (MEND, [27]) to carry out these analyses. While these models simplify the
incorporation of biological information and provide a natural means for integrating genomic information
with field scale models, the experimental designs necessary to calibrate and test these models are
relatively sophisticated, time-consuming and expensive. In general, statistical models as above are used to
identify the critical environmental, taxonomic and functional relationships that must be considered from
high-resolution time-space-condition field data. Functional assignments are made for observed taxa
(inferred from amplicon sequence-based classification into a microbial functional class or through
metagenomic gene functional analysis). If quality annotations can be achieved, biochemical pathways
can be estimated and fit into standard models of geochemical transformations.

To fit model kinetics, ample time-series and perturbation data must be present to allow both training and
testing of the models. The MEND model is based upon the consumption of soluble organic matter along
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with the incorporation of fundamental variables that impact the reactions. These include pH, soil water
potential, temperature and direct action of biomass. There have now been a number of successful uses of
such models for carbon cycle processes at large scales in grasslands over a 12 year period [28,29] and to
predict the effects of warming. While these models can be powerful in predicting the overall
environmental processes at scale, the opposite question, why specific microbes are present or persistent or
together at specific locations over time is not directly answered. To connect the mechanisms that adapt an
organism and its community to a particular location for carrying out a particular process may require a
finer grained modeling framework. This may also be the level required if organisms (or communities) are
ever to be engineered effectively for operation in open environments.

Finer Resolution of Hydrogeochemical Parameters Over a Designated Space and Time

The reactive transport model (RTM) in groundwater is aimed to quantitatively describe and predict the
distribution of chemicals accounting for the transport and transformations, both abiotic and biotic,
integrating various active hydrological, geochemical, and microbial processes [30,31]. Different processes
can be represented in a RTM at multi-spatial scales, from nanometers to hundreds of meters and beyond.
For example, flow and advection of solutes can be simulated at pore scale (as fine as nanometer) when the
individual pores are represented explicitly and can also be simulated at larger scales (up to field scale) when
the porous medium is treated as a continuum. Models for reactive microbial processes can be developed for
individual isolates in the laboratory and larger spatial scales when specific microbial impacts on
environments are considered. The increasing capability of sampling and chemical and microbial meta-
omics analysis allows us to capture the subsurface heterogeneity at a fine scale. However, the computational
cost of fine-scale simulations is very high if such models are applied to a larger scale site. Therefore,
developing multiscale models makes it feasible to incorporate the fine-scale information in larger-scale
applications with acceptable computational costs.

Interests in microbial communities in subsurface systems are growing as contributors to global carbon and
nitrogen cycling in relationship to hydrogeochemical parameters, but as noted above, the exact
relationships between these parameters and the distribution of microbial communities and activities is
still poorly understood and is difficult to predict. This is because microbial community composition and
its activity depend on site-specific environmental conditions, such as rainfall perturbations and
heterogeneous hydraulic conductivity that can be linked to dissolved oxygen dynamics. In the modeling
of N turnover in the shallow subsurface, it is necessary to incorporate the changes of the microbial
community in response to hydrological perturbations and the subsequent biogeochemical processes. In
order to achieve this type of integrated modeling, we will develop a reactive transport model of nitrogen
in the subsurface system for the ENIGMA Subsurface Observatory (SSO) site. The model utilizes the
FICSME framework [15] as the foundation for developing an effective reactive transport code in
conjunction with a module utilizing omics and community data. The model is parameterized and
calibrated by many different types of data collected by the ENIGMA SFA (e.g., meteorological,
hydrological, microbial, geophysical, and geochemical datasets). As a novel capability to the modeling
community, our work incorporates omics data into the model, connecting the microbial community to
nitrogen cycling in the meso-field scale subsurface system, and allows the microbial community to evolve
in response to geochemical and flow conditions.
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Figure 3. Cone Penetrometer Testing (CPT) identified sediment behavior types to refusal bat the intermediate zone
overlying the weathered bedrock. A zone that has long been identified as a major zone of flow, recharge, and
transport. The cross section of a three-dimensional volumetric model was constructed to quantify permeability
characteristics of Area 3. The volumetric model used five classifications with a blending method to solve for
subsurface volumes between CPT pushes where direct linear mapping was insufficient. Multiple iterations of a
random model generated probable solutions and identified silty sand/compacted material as the most abundant soil
type. Image: Andrew Putt UTK

High-resolution three-dimensional models of the shallow subsurface had not been previously done at the
Y-12 site [32]. The team used for the first time a cone penetrometer (CPT) to effectively identify areas of
lesser heterogeneity where sample composition was largely homogeneous at a ninety-five percent
confidence interval. 130 pushes were made in 16 days from the surface to 6-9 m depths. The penetration
testing identified a majority of the similar soil composition profiles to be located within the saturated
material of lower area 3 and identified the abundant soil types as silty and compacted sediments at the
potential SSO site (near wells of interest FW106, FW112, and the newly drilled tracer testing flow path
well EFPWO01). During CPT activities, a significantly higher and direct response in local well
geochemistry and water level was measured in the tested wells, suggesting decreased connectivity in
certain zones between the wells. Activities with the greatest response have been identified near a former
buried stream channel and in material where advanced weathering and dissolution is likely occurring.
This unequal and directional response may be related to soil properties (e.g., macropores in fine grained
materials) and the preferential flow identified in this study site rather than a direct relationship to soil
behavior type. A subsequent analysis [33] suggests that pore pressures measured by the CPT penetration
were highest in sediments where penetration activities were not identifiable. These results further suggest
that the CPT technique was able to identify and distinguish transport pathways circumventing the intact,
low-flow clay matrix extremely common in engineered and backfilled sites. These data have been used to
construct estimates of permeability which are being tested in laboratory columns in combination with the
FICSME modeling objective in an effort to model carbon and nitrogen cycling under environmentally
relevant perturbations. These studies were critical for establishing new wells that will constitute the SSO.

10



2022 Performance Metric Quarterly Report Q4 LBNL ENIGMA SFA

In a more microbial/functional group centric approach, we have developed a microbial enzyme functional
group-based RTM at the field-scale, in which the microbial-mediated biogeochemical reactions are
presented through enzyme groups, representing the overall microbial function dynamics at the modeling
region. The meta-omics measurements will be incorporated into the model calibration and validation.

We also built a primary flow field and solute transport model using the commonly applied MODFLOW
and MT3D-USGS models. In addition, we modified MT3D-USGS to incorporate multiple microbial
functional groups, which mediate the critical metabolic processes in groundwater, such as organic matter
fermentation, methanogenesis, denitrification, nitrification, dissimilatory sulfate reduction/oxidation, and
uranium (VI) reduction. Since the groundwater reactive transport process combines complex hydrological,
geochemical, and microbial processes, it is challenging to estimate various types of parameters. Therefore,
we developed a parameter optimization procedure for field-scale groundwater RTM based on the Shuffled
Complex Evolution (SCE) algorithm. To enhance the computation efficiency, we developed the parallel
computation program with the OpenMPI interface on a supercomputer.

The new model was applied to a historical time-series data (13 months) of emulsified vegetable oil injection
activity at the OR-FRC site as an example to show the development and performance of the model. The
total area of the modeling zone was around 3,700 m?, covering 21 observation wells. The modeling area
was discretized into grids with 0.5 m x 0.5 m x 2 m for the finite-difference calculation. Firstly, we used
the MODFLOW and water level observations to estimate the spatial distribution of hydraulic parameters,
i.e., hydraulic conductivity and recharge rate, and simulate the transient flow field after EVO injection. The
mean residual of the water heads in the optimization was <0.01 m. Then the MT3D-USGS and the
developed SCE optimization algorithm were applied to calibrate the baseline model and simulated the
chemical transport processes. Two recommended statistical measures, correlation coefficient and PBIAS
[34,35], were adopted to evaluate the RTM performance. The results showed that the model simulations
for tracer test and chemical transport were all at the level of acceptable performance (correlation coefficient
>0.42, PBIAS <£70%) or better for most observation wells and all observed chemicals (bromide, acetate,
nitrate, sulfate, and uranium). Next, we will integrate the omics data into the model calibration and
validation. By comparing with the baseline RTM, we will evaluate the omics-informed RTM to see if we
can improve modeling performance or reduce the uncertainty by introducing necessary functional
enzymes/genes.

Summary

In the initial stages of characterizing the OR-FRC, we started with modeling marker genes (both general
and functional) representing microbial communities in relation to expanding geochemical parameters.
Along these lines, tools were also developed to minimize cross-correlations of temporal and/or spatial data
that typically co-occurs within field data. This has been an issue that challenges microbial ecology of any
environment (from soil/water to human health), and work from the ENIGMA group helped account for
these challenges. Subsequent model development incorporated machine-learning techniques to gain
predictive power between identified combinations of microbial groups that aligned with environmental
variation (e.g., occurence of heavy metals or radionuclides). Variations of this framework have been further
adapted to also be predictive at different field sites with different conditions. However, as we worked to
include and sample sediments and sediment zones along with groundwater, we realized the
underappreciated variability in microbial communities along with the dynamic nature of hydrogeochemical

11



2022 Performance Metric Quarterly Report Q4 LBNL ENIGMA SFA

parameters in the context of both low-time frame and high-time frame ecological processes that were
important in shaping the in sifu microbial communities. Not only do these processes need to be measured
at increasing spatial and temporal resolution, but microbial traits need to be more integrated within reactive
transport models that represent important hydrogeochemical parameters that dictate macro-scale processes.
In essence, how do we inform landscape models with meaningful microbial signatures and behaviors that
function at the micro-scale but impact processes of interest (e.g., N-cycling) at the macro-scale? Therefore,
we are now co-designing the field observatories to help calibrate and test genome-informed reactive
transport models to capture microscale flow dynamics that represent field parameters and that can
incorporate microbial genetic and phenotypic signatures and predict the fate and transport of contaminants
and processes of interest. Other parts of ENIGMA focus on identifying the key signatures (microbial groups
and their activities) and the environmental constraints that play significant roles in the processes of interest,
and these parameters are then used in the developing models. Looking to the future, we aim to use the
FICSME framework to demonstrate the ability to predict how perturbations to bio-systems (e.g., soil,
sediments, groundwater) impact ecosystem services and vice versa and sites within and beyond the Y-12
site.
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